Serveur d'exploration sur Caltech

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of different approaches to modeling the second‐order ionospheric delay on GPS measurements

Identifieur interne : 000008 ( Main/Exploration ); précédent : 000007; suivant : 000009

Evaluation of different approaches to modeling the second‐order ionospheric delay on GPS measurements

Auteurs : M. Garcia-Fernandez [États-Unis] ; S. D. Desai [États-Unis] ; M. D. Butala [États-Unis] ; A. Komjathy [États-Unis]

Source :

RBID : ISTEX:DEA850B6B929F71227B696C6A9937809D38851AC

Abstract

This work evaluates various approaches to compute the second order ionospheric correction (SOIC) to Global Positioning System (GPS) measurements. When estimating the reference frame using GPS, applying this correction is known to primarily affect the realization of the origin of the Earth's reference frame along the spin axis (Z coordinate). Therefore, the Z translation relative to the International Terrestrial Reference Frame 2008 is used as the metric to evaluate various published approaches to determining the slant total electron content (TEC) for the SOIC: getting the slant TEC from GPS measurements, and using the vertical total electron content (TEC) given by a Global Ionospheric Model (GIM) to transform it to slant TEC via a mapping function. All of these approaches agree to 1 mm if the ionospheric shell height needed in GIM‐based approaches is set to 600 km. The commonly used shell height of 450 km introduces an offset of 1 to 2 mm. When the SOIC is not applied, the Z axis translation can be reasonably modeled with a ratio of +0.23 mm/TEC units of the daily median GIM vertical TEC. Also, precise point positioning (PPP) solutions (positions and clocks) determined with and without SOIC differ by less than 1 mm only if they are based upon GPS orbit and clock solutions that have consistently applied or not applied the correction, respectively. Otherwise, deviations of few millimeters in the north component of the PPP solutions can arise due to inconsistencies with the satellite orbit and clock products, and those deviations exhibit a dependency on solar cycle conditions.

Url:
DOI: 10.1002/2013JA019356


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of different approaches to modeling the second‐order ionospheric delay on GPS measurements</title>
<author>
<name sortKey="Garcia Ernandez, M" sort="Garcia Ernandez, M" uniqKey="Garcia Ernandez M" first="M." last="Garcia-Fernandez">M. Garcia-Fernandez</name>
</author>
<author>
<name sortKey="Desai, S D" sort="Desai, S D" uniqKey="Desai S" first="S. D." last="Desai">S. D. Desai</name>
</author>
<author>
<name sortKey="Butala, M D" sort="Butala, M D" uniqKey="Butala M" first="M. D." last="Butala">M. D. Butala</name>
</author>
<author>
<name sortKey="Komjathy, A" sort="Komjathy, A" uniqKey="Komjathy A" first="A." last="Komjathy">A. Komjathy</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:DEA850B6B929F71227B696C6A9937809D38851AC</idno>
<date when="2013" year="2013">2013</date>
<idno type="doi">10.1002/2013JA019356</idno>
<idno type="url">https://api.istex.fr/document/DEA850B6B929F71227B696C6A9937809D38851AC/fulltext/pdf</idno>
<idno type="wicri:Area/Main/Corpus">000105</idno>
<idno type="wicri:Area/Main/Curation">000105</idno>
<idno type="wicri:Area/Main/Exploration">000008</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Exploration">000008</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Evaluation of different approaches to modeling the second‐order ionospheric delay on GPS measurements</title>
<author>
<name sortKey="Garcia Ernandez, M" sort="Garcia Ernandez, M" uniqKey="Garcia Ernandez M" first="M." last="Garcia-Fernandez">M. Garcia-Fernandez</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Near Earth Tracking Applications, JPL/Caltech, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Desai, S D" sort="Desai, S D" uniqKey="Desai S" first="S. D." last="Desai">S. D. Desai</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Near Earth Tracking Applications, JPL/Caltech, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Butala, M D" sort="Butala, M D" uniqKey="Butala M" first="M. D." last="Butala">M. D. Butala</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ionospheric and Atmospheric Remote Sensing Group, JPL/Caltech, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Komjathy, A" sort="Komjathy, A" uniqKey="Komjathy A" first="A." last="Komjathy">A. Komjathy</name>
<affiliation wicri:level="2">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Ionospheric and Atmospheric Remote Sensing Group, JPL/Caltech, Pasadena, California</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Journal of Geophysical Research: Space Physics</title>
<title level="j" type="abbrev">J. Geophys. Res. Space Physics</title>
<idno type="ISSN">2169-9380</idno>
<idno type="eISSN">2169-9402</idno>
<imprint>
<publisher>Blackwell Publishing Ltd</publisher>
<date type="published" when="2013-12">2013-12</date>
<biblScope unit="volume">118</biblScope>
<biblScope unit="issue">12</biblScope>
<biblScope unit="page" from="7864">7864</biblScope>
<biblScope unit="page" to="7873">7873</biblScope>
</imprint>
<idno type="ISSN">2169-9380</idno>
</series>
<idno type="istex">DEA850B6B929F71227B696C6A9937809D38851AC</idno>
<idno type="DOI">10.1002/2013JA019356</idno>
<idno type="ArticleID">JGRA50717</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">2169-9380</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">This work evaluates various approaches to compute the second order ionospheric correction (SOIC) to Global Positioning System (GPS) measurements. When estimating the reference frame using GPS, applying this correction is known to primarily affect the realization of the origin of the Earth's reference frame along the spin axis (Z coordinate). Therefore, the Z translation relative to the International Terrestrial Reference Frame 2008 is used as the metric to evaluate various published approaches to determining the slant total electron content (TEC) for the SOIC: getting the slant TEC from GPS measurements, and using the vertical total electron content (TEC) given by a Global Ionospheric Model (GIM) to transform it to slant TEC via a mapping function. All of these approaches agree to 1 mm if the ionospheric shell height needed in GIM‐based approaches is set to 600 km. The commonly used shell height of 450 km introduces an offset of 1 to 2 mm. When the SOIC is not applied, the Z axis translation can be reasonably modeled with a ratio of +0.23 mm/TEC units of the daily median GIM vertical TEC. Also, precise point positioning (PPP) solutions (positions and clocks) determined with and without SOIC differ by less than 1 mm only if they are based upon GPS orbit and clock solutions that have consistently applied or not applied the correction, respectively. Otherwise, deviations of few millimeters in the north component of the PPP solutions can arise due to inconsistencies with the satellite orbit and clock products, and those deviations exhibit a dependency on solar cycle conditions.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Garcia Ernandez, M" sort="Garcia Ernandez, M" uniqKey="Garcia Ernandez M" first="M." last="Garcia-Fernandez">M. Garcia-Fernandez</name>
</region>
<name sortKey="Butala, M D" sort="Butala, M D" uniqKey="Butala M" first="M. D." last="Butala">M. D. Butala</name>
<name sortKey="Desai, S D" sort="Desai, S D" uniqKey="Desai S" first="S. D." last="Desai">S. D. Desai</name>
<name sortKey="Komjathy, A" sort="Komjathy, A" uniqKey="Komjathy A" first="A." last="Komjathy">A. Komjathy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Amerique/explor/CaltechV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000008 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000008 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Amerique
   |area=    CaltechV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:DEA850B6B929F71227B696C6A9937809D38851AC
   |texte=   Evaluation of different approaches to modeling the second‐order ionospheric delay on GPS measurements
}}

Wicri

This area was generated with Dilib version V0.6.32.
Data generation: Sat Nov 11 11:37:59 2017. Site generation: Mon Feb 12 16:27:53 2024